当前位置:首页 > 电子图书 > 电子电路 > 正文内容

全桥LLC电路设计难点,采取新的技术方案

admin1年前 (2023-07-25)电子电路41

1. 磁性器件的设计遵循三个基本原则――小型化,低损耗和低成本。

在功率密度越来越高的情况下,减小磁性器件的体积是非常必要的,这会给整个模块的布局带来非常大的便利。为了尽可能的提高效率,改善模块内部散热,磁性器件的损耗也必须尽可能的小,同时损耗的降低也使得磁性器件使用B级绝缘材料成为可能,可以进一步降低制造成本。另外还需要从绕制工艺和工时方面考虑电感和变压器的成本,这些都需要体现在磁性器件的设计当中。

磁性器件的设计难点在于损耗与热,这两个互为一体,同时也是整个DC/DC电路的设计最难点。

对于LLC谐振电路而言,由于采用调频控制,不同的输出电压和负载条件都对应着不同的工作频率,因此磁性器件的工作范围非常宽,工作频率从170kHz至450kHz,在任何一个工作点均必须保证磁性器件的热设计满足降额要求或稳定性要求,否则整流模块的可靠性就无从保证。

磁性器件的设计遵循以下步骤:

1) 计算;

2)仿真;

3)优化。

根据整流模块规格书要求,结合整体布局考虑,确定磁性器件的基本尺寸(可以有多种方案),通过mathcad进行损耗计算,从而初步得出磁性器件的损耗,进行对比和筛选。

通过ansoft磁性器件仿真平台,对不同方案的磁性器件进行损耗仿真,得出不同磁芯和不同绕组结构的损耗结果,该结果较为接近真实情况,可以对计算结果进行修正,获得更为优化的方案。

根据损耗计算和仿真,进行模块整体布局的热仿真实验,从而得出热设计的裕量,以此为依据考虑是否要进一步优化设计磁性器件或优化模块布局。

在上述计算和仿真的基础上,打样实物器件进行效率和热测试,验证设计是否合理,并在此基础上进一步进行优化。

2. 热设计关系到整个整流模块的可靠性,对于通信电源整流模块而言,工作环境恶劣,通常要求在45度环温下还能够满功率输出,输出电压范围宽广,必须满足42V~58V范围内的各种工作条件,由此对模块内部的热设计提出了更为严格的要求。

对于LLC谐振电路而言,有几个必须重点关注的热风险:低压大电流下的开关管发热;低压大电流下的谐振电感发热;低压大电流下主变线包发热;58V满载条件下主变磁芯发热。

3. 因为在低压大电流工作状态下,开关频率接近谐振频率的2倍频,开关管的关断电流接近峰值,由此造成开关管的关断损耗增大,造成较大的热风险。

减小MOSFET关断损耗的方法是在开关管两端并联电容,等效的加大开关管的结电容,这样在关断的暂态过程中,可以延缓开关管DS两端电压的上升时间,错开电流下降和电压上升的交叠区域,从而减小关断损耗。

左图等效的是开关管未加并联电容的关断电流和电压示意图,i和V的交叠区域较大,损耗值也就较大,如果加了并联吸收电容,则等效的电流和电压波形如右图所示,功率P的积分值会较左图减小很多。效率的实测结果显示,在全桥的左边桥臂和右边桥臂各加400p的并联电容后(在上管和下管并联电容的效果是一样的),轻载效率可以提高0.4%,满载效率可以提高0.1%。但是并联吸收电容的取值也不是越大越好,首先要保证开关管DS电压的上升时间不能大于死区时间,其次是较大的并联电容可能导致ZVS条件的丧失,另外较大的电容会对电路的谐振参数产生影响。

4. 低压大电流下谐振电感的热问题主要是由于开关频率升高磁通密度增大引起的,由于工作电压越低开关频率越高,原边电流波形越接近三角波(磁通密度随之增大),造成了谐振电感磁芯在低输出电压时发热严重,不能稳定工作,从而影响了模块的可靠性。

传统的电感均采用骨架(有骨架磁性器件)或线包(无骨架磁性器件)紧贴磁芯中柱或边柱的绕制方法,且采用立式放置,磁芯被包裹部分垂直于风道方向,如下图所示。

传统的设计方法主要有以下两个缺陷:

1)中柱或边柱被骨架或线包紧紧包裹,热量易累积而得不到有效的发散;2)骨架(或线包)紧贴中柱或边柱,导致磁芯被包裹部分磁通分布很不均衡,磁通密度较大的区域形成局部热点,增加了磁芯内部温度分布的不均匀,易导致局部过热。

针对以上设计难点,为了保证磁芯的热稳定性和开关电源模块的可靠性,采取以下新的技术方案来改善磁芯的局部热点,并加强散热效果,从而使磁芯的温度保持在合理的范围之内。

1) 采用骨架或线包外扩方案,降低磁芯被包裹区域的局部磁通密度,从而降低局部热点;

2) 磁芯顺着风道方向侧卧放置,使风能够直接吹到磁芯被包裹部分,从而带走热量,达到加强散热的效果;

具体实施方法参见下图:

5. 低压大电流下主变的线包发热主要是由于主变寄生参数与PCB寄生参数(引线电感)振荡引起的,下图是理想情况下主变原副边电流仿真波形:

图 11 理想条件下仿真42V×61A输出,原边电流和副边波形

如果考虑主变原副边漏感,原副边寄生电容等寄生参数,仿真42V×61A输出条件下原副边电流波形如下图所示:

图 11 考虑主变寄生参数仿真42V×61A输出,原边电流和副边波形

图 12 实测42V×61A输出,原边电流和副边波形

由于寄生参数的存在,导致原副边电流叠加了高频振荡谐波电流,这部分高频振荡电流的频率高(6MHz),幅值大(峰峰值20A),考虑集肤效应和邻近效应,主变绕组在6MHz频率点的交流阻抗是400kHz频率点的十几倍甚至几十倍,因此这部分振荡电流的存在,导致了主变绕组在42V输出时发热严重,引起了可靠性问题。
                                         


扫描二维码推送至手机访问。

版权声明:本文由梦魁网络资源站发布,如需转载请注明出处。

本文链接:https://family.monkui.com:39/?id=1174

标签: 电子电路
分享给朋友:

相关文章

非常全的地线基础知识整理

非常全的地线基础知识整理

线的作用地线的主要作用就是当电器出现故障时,电源可能击穿(或:破坏)某些元件,使电器的外壳带电。将电器的外壳接地,可以使漏电保护装置1. 信号“地”;信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公共段,图形符号“⊥”...

电工最实用的8大经验公式,快快收藏~

电工最实用的8大经验公式,快快收藏~

一、照明电路电流计算及熔丝刀闸的选择口诀:白炽灯算电流,可用功率除压求;日光灯算电流,功率除压及功率因数求(节能日光灯除外);刀闸保险也好求,一点五倍额定流。说明:照明电路中的白炽灯为电阻性负荷,功率因数cosΦ=1,用功率P单位瓦除以电压...

200个电气知识,值得收藏

01电荷的性质答:电荷之间存在着相互作用力,同性电荷相互排斥,异性电荷相互吸引。02电场答:在带电体周围的空间存在着一种特殊物质,它对放在其中的任何电荷表现为力的作用,这一特殊物质叫做电场。03电阻,影响电阻的因素答:电流在导体内流动过程中...

看懂这75张电路图,老板都管不了你!

看懂这75张电路图,老板都管不了你!

今天为大家整理了一些各类电气控制接线图、电子元件工作原理图,还有可控硅整流电路及负反馈调速装置原理等等,希望对大家的工作有所帮助,一起来了解一下吧。01可控硅调速电路02电磁调速电机控制图03三相四线电度表互感器接线04能耗制动05顺序起动...

手把手教你详细的硬件电路设计

手把手教你详细的硬件电路设计

这篇文章献给那些刚开始或即将开始设计硬件电路的人,刚刚开始接触电路板的时候,你可能充满了疑惑同时又带着些兴奋。在网上许多关于硬件电路的经验知识让人目不暇接,像信号完整性、EMI准会把你搞晕,别急,一切要慢慢来。01总体思路设计硬件电路,大的...

​这30种EMC标准电路,记得收藏

​这30种EMC标准电路,记得收藏

分享一些EMC标准电路,可以收藏参考。01 AC24V接口EMC设计标准电路02 AC110V-220V EMC设计标准电路03 AC380V接口EMC设计标准电路04 AV接口EMC设计标准电路05...

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。